您现在的位置: 兴宁市宁中中心小学 >> 教学天地 >> 数学乐园 >> 正文  
能被7、11整除数的特征
作者:佚名 来源:本站原创 点击数:550 发布时间:2017/4/15

把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。

例如:判断491678能不能被11整除。

—→奇位数字的和9+6+8=23

—→偶位数位的和4+1+7=12

23-12=11

因此,491678能被11整除。

这种方法叫“奇偶位差法”。

除上述方法外,还可以用割减法进行判断。即:从一个数里减去11的10倍、20倍、30倍……到余下一个100以内的数为止。如果余数能被11整除,那么,原来这个数就一定能被11整除。

又如:判断583能不能被11整除。

用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除。

能被7整除的数的特征

若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

  • 上一篇文章:

  • 下一篇文章:
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)
    学校简介教学点介绍  |  校园风采 |  学生风采魅力教师 | 管理登录 | 
    Copyright@2017 兴宁市宁中中心小学 .All rights reserved.
    地址:兴宁市宁中镇竹一村 电话:0753-3392153
    技术支持:兴宁视窗